Create a Private Retrieval Augmented Generation (RAG) Chatbot using Elasticsearch + Ollama (coming soon)

In this hands-on project, you’ll build a private, fully local Retrieval-Augmented Generation (RAG) chatbot from scratch — no APIs, no cloud dependencies. Just pure local compute and real-world stack.

  • Chunk and embed documents using llama-index
  • Store and query vector data in Elasticsearch
  • Run a fully local LLM using Ollama (e.g. Mistral, Phi-3)
  • Build a chatbot UI with Streamlit
  • Implement Retrieval-Augmented Generation (RAG) end-to-end
  • Debug real-world issues like timeouts and embedding mismatches


Complete and Continue